
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
The Westin Miyako, Kyoto, Japan, September 28 - October 3, 2014, on CD-ROM (2014)

XSBENCH – THE DEVELOPMENT AND VERIFICATION OF A
PERFORMANCE ABSTRACTION FOR MONTE CARLO REACTOR

ANALYSIS

John R. Tramm and Andrew R. Siegel
Center for Exascale Simulation of Advanced Reactors

Argonne National Laboratory, Argonne, IL, USA
jtramm@mcs.anl.gov
siegela@mcs.anl.gov

Tanzima Islam and Martin Schulz
Lawrence Livermore National Laboratory, Livermore, CA, USA

islam3@llnl.gov
shulzm@llnl.gov

ABSTRACT

We isolate the most computationally expensive steps of a robust nuclear reactor core Monte
Carlo particle transport simulation. The hot kernel is then abstracted into a simplified proxy
application, designed to mimic the key performance characteristics of the full application. A
series of performance verification tests and analyses are carried out to investigate the low-level
performance parameters of both the simplified kernel and the full application. The kernel’s
performance profile is found to closely match that of the application, making it a convenient test
bed for performance analyses on cutting edge platforms and experimental next-generation high
performance computing architectures.

Key Words: XSBench, OpenMC, Monte Carlo, neutron transport, multi-core, reactor
simulation

1. INTRODUCTION

Monte Carlo (MC) transport algorithms are considered the “gold standard” of accuracy for a broad
range of applications – e.g., nuclear reactor physics, shielding, detection, medical dosimetry, and
weapons design to name just a few examples. In the design and analysis of nuclear reactor cores, the
key application driver of the present analysis, MC methods for neutron transport offer significant
potential advantages compared to deterministic methods given their simplicity, avoidance of ad hoc
approximations in energy treatment, and lack of need for complex computational meshing of reactor
geometries.

On the other hand it is well known that robust analysis of a full reactor core is still beyond the
reach of MC methods. Tremendous advances have been made in recent years, but the computing
requirements for full quasi-static depletion analysis of commercial reactor cores is a performance-
bound problem, even on existing leadership class computers. It is also clear that many of the issues

mailto:jtramm@mcs.anl.gov
mailto:siegela@mcs.anl.gov
mailto:islam3@llnl.gov
mailto:shulzm@llnl.gov


Tramm et al.

related to scalability on distributed memory machines have been adequately addressed in recent
studies[1][2], and that the path to future speedups involves taking better advantage of a broad range
of multi-core systems.

To investigate scaling and performance issues of robust, quasi-static nuclide depletion calculations
(i.e., where hundreds of nuclides are present in the fuel region and performance is dominated by
macroscopic cross section calculations), such as are performed by the neutron transport application
OpenMC[1], we abstract a key computational kernel that is responsible for the majority of the
algorithm’s runtime and implement it in the form of the “proxy application” XSBench. The end
result is that the essential computational conditions and tasks of fully featured MC transport codes
are retained in the kernel, without the additional complexity of the full application. This provides
a much simpler and more transparent platform for isolating where both hardware and software
bottlenecks inhibit scaling of the algorithm.

We then run a series of analyses that investigate the low-level performance parameters of both
our proxy application, XSBench, and the full scale application, OpenMC, that it seeks to mimic.
The performance profiles are compared to determine the accuracy of XSBench in recreating the
computational conditions of OpenMC and to determine its suitability as a “stand-in” for the full
application. This study is done so that future analyses can be done in which we use and modify our
extracted kernel to identify low-level hardware and software bottlenecks, so that we can make an
intelligent prediction as to how the MC transport algorithm will scale on next generation, many-core
systems.

1.1. The Reactor Simulation Problem

Computer-based simulation of nuclear reactors is a well established field, with origins dating back
to the early years of digital computing. Traditional reactor simulation techniques aim to solve the
diffusion equation for a given material geometry and starting (source term) neutron distribution
within the reactor. This is done in a deterministic fashion using well developed numerical methods.
Deterministic codes are capable of running quickly and providing precise solutions, however, there
are other approaches to the problem that offer potential advantages.

An alternative method, Monte Carlo (MC) simulation, simulates the path of a particle neutron as
it travels through the reactor core. As many particle histories are simulated, a picture of the full
distribution of neutrons within the reactor core is developed. Such codes are inherently simple, easy
to understand, and potentially easy to rethink when moving to new, novel architectures. Furthermore,
the methodologies utilized by MC simulation require very few assumptions, resulting in highly
accurate results given adequate statistical convergence. The downside to this method, however, is
that a huge number of neutron histories must be run in order to achieve an acceptably low variance
in the results. For many problems this means an impractically long time-to-solution, though such
limitations may be overcome given the increased computational power of next-generation, exascale
supercomputers.

2/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



XSBench – The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis

1.2. OpenMC

OpenMC is a Monte Carlo particle transport simulation code focused on neutron criticality cal-
culations [1]. It is capable of simulating 3D models based on constructive solid geometry with
second-order surfaces. The particle interaction data is based on ACE format cross sections, also
used in the MCNP and Serpent Monte Carlo codes. OpenMC has been used to investigate scaling
concerns on distributed memory architectures, such as the IBM Blue Gene/P and Blue Gene/Q.

OpenMC was originally developed by members of the Computational Reactor Physics Group at
the Massachusetts Institute of Technology starting in 2011. Various universities, laboratories, and
other organizations now contribute to its development. The application is written in FORTRAN,
with parallelism supported by a hybrid OpenMP/MPI model. OpenMC is an open source software
project available online[3].

1.3. XSBench

The XSBench proxy application models the most computationally intensive part of a typical MC
reactor core transport algorithm – the calculation of macroscopic neutron cross sections, a kernel
which accounts for around 85% of the total runtime of OpenMC[4]. XSBench retains the essential
performance-related computational conditions and tasks of fully featured reactor core MC neutron
transport codes, yet at a fraction of the programming complexity of the full application. Particle
tracking and other features of the full MC transport algorithm were not included in XSBench as
they take up only a small portion of runtime in robust reactor computations. This provides a much
simpler and far more transparent platform for testing the algorithm on different architectures, making
alterations to the code, and collecting hardware runtime performance data.

XSBench was developed by members of the Center for Exascale Simulation of Advanced Reactors
(CESAR) at Argonne National Laboratory. The application is written in C, with multi-core paral-
lelism support provided by OpenMP. XSBench is an open source software project. All source code
is publicly available online[5].

2. ALGORITHM

2.1. Reactor Model

When carrying out reactor core analysis, the geometry and material properties of a postulated
nuclear reactor must be specified in order to define the variables and scope of the simulation model.
For the purposes of XSBench, we use a well known community reactor benchmark known as the
Hoogenboom-Martin model[6]. This model is a simplified analog to a more complete, “real-world”
reactor problem, and provides a standardized basis for discussions on performance within the reactor
simulation community. XSBench recreates the computational conditions present when fully featured
MC neutron transport codes (such as OpenMC) simulate the Hoogenboom-Martin reactor model,

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

3/12



Tramm et al.

preserving a similar data structure, a similar level of randomness of access, and a similar distribution
of FLOPs and memory loads.

2.2. Neutron Cross Sections

The purpose of an MC particle transport reactor simulation is to calculate the distribution and
generation rates of neutrons within a nuclear reactor. In order to achieve this goal, a large number
of neutron lifetimes are simulated by tracking the path and interactions of a neutron through the
reactor from its birth in a fission event to its escape or absorption, the latter possibly resulting in
subsequent fission events.

Each neutron in the simulation is described by three primary factors: its spatial location within
a reactor’s geometry, its speed, and its direction. At each stage of the transport calculation, a
determination must be made as to what the particle will do next. Possible outcomes include
uninterrupted continuation of free flight, collision, or absorption (possibly resulting in fission). The
determination of which event occurs is based on a random sampling of a statistical distribution that
is described by empirical material data stored in main memory. This data, called neutron cross
section data, represents the probability that a neutron of a particular speed (energy) will undergo
some particular interaction when it is inside a given type of material.

To account for neutrons across a wide energy spectrum and materials of many different types, the
algorithm requires use of a very large data structure that holds cross section data points for many
discrete energy levels. In the case of the simplified Hoogenboom-Martin benchmark roughly 5.6
GB1 of data is required.

2.3. Data Structure

A material in the Hoogenboom-Martin reactor model is composed of a mixture of nuclides. For
instance, the “reactor fuel” material might consist of several hundred different nuclides, while the
“pressure vessel side wall” material might only contain a dozen or so. In total, there are 12 different
materials and 355 different nuclides present in the modeled reactor. The data usage requirements to
store this model are significant, totaling 5.6 GB, as summarized in Table I.

For each nuclide, an array of nuclide grid points are stored as data in main memory. Each nuclide
grid point has an energy level, as well as five cross section values (corresponding to five different
particle interaction types) for that energy level. The arrays are ordered from lowest to highest energy
levels. The number, distribution, and granularity of energy levels varies between nuclides. One
nuclide may have hundreds of thousands of grid points clustered around lower energy levels, while
another nuclide may only have a few hundred grid points distributed across the full energy spectrum.
This obviates straightforward approaches to uniformly organizing and accessing the data.

1We estimate that for a robust depletion calculation, in excess of 100 GB of cross section data would be required.[7]

4/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



XSBench – The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis

In order to increase efficiency, the algorithm utilizes another data structure, called the unionized
energy grid, as described by Leppänen[8] and Romano[1]. The unionized grid facilitates fast lookups
of cross section data from the nuclide grids. This structure is an array of grid points, consisting
of an energy level and a set of pointers to the closest corresponding energy level on each of the
different nuclide grids.

Nuclides Tracked 355
Total # of Energy Gridpoints 4,012,565

Cross Section Interaction Types 5
Total Size of Cross Section Data Structures 5.6 GB

Table I. XSBench Data Structure Summary

2.4. Access Patterns

In a full MC neutron transport application, the data structure is accessed each time a macroscopic
cross section needs to be calculated. This happens anytime a particle changes energy (via a collision)
or crosses a material boundary within the reactor. These macroscopic cross section calculations
occur with very high frequency in the MC transport algorithm, and the inputs to them are effectively
random. For the sake of simplicity, XSBench was written ignoring the particle tracking aspect
of the MC neutron transport algorithm and instead isolates the macroscopic cross section lookup
kernel. This provides a large reduction in program complexity while retaining similarly random
input conditions for the macroscopic cross section lookups via the use of a random number generator.

In XSBench, each macroscopic cross section lookup consists of two randomly sampled inputs: the
neutron energy Ep, and the material mp. Given these two inputs, a binary (log n) search is done on
the unionized energy grid for the given energy. Once the correct entry is found on the unionized
energy grid, the material input is used to perform lookups from the nuclide grids present in the
material. Use of the unionized energy grid means that binary searches are not required on each
individual nuclide grid. For each nuclide present in the material, the two bounding nuclide grid
points are found using the pointers from the unionized energy grid and interpolated to give the exact
microscopic cross section at that point.

All calculated microscopic cross sections are then accumulated (weighted by their atomic density in
the given material), which results in the macroscopic cross section for the material. Algorithm 1 is
an abbreviated summary of this calculation.

In theory, one could “pre-compute” all macroscopic cross sections on the unionized energy grid
for each material. This would allow the algorithm to run much faster, requiring far fewer memory
loads and far fewer floating point operations per macroscopic cross section lookup. However, this
would assume a static distribution of nuclides within a material. In practice, MC transport nuclide-
depletion calculations are quasi-static; they will need to track the burn-up of fuels and account for
heterogeneous temperature distributions within the reactor itself. This means that concentrations are
dynamic, rather than static, therefore necessitating the use of the more versatile data model deployed
in OpenMC and XSBench. Even if static concentrations were assumed, pre-computation of the full

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

5/12



Tramm et al.

Algorithm 1 Classical Continuous Energy Macroscopic Cross Section Lookup
1: R(mp, Ep) . randomly sample inputs
2: Locate Ep on Unionized Grid . binary search
3: for n ∈ mp do . for each nuclide in input material
4: σa ← n,Ep . lookup bounding micro xs’s
5: σb ← n,Ep + 1
6: σ ← σa, σb . interpolate
7: Σ← Σ + ρn · σ . accumulate macro xs
8: end for

spectrum of macroscopic cross sections would need to be done for all geometric regions (of which
there are many millions) in the reactor model, leading to even higher memory requirements.

3. EXPERIMENTS

To investigate the performance and resource utilization profiles of both applications, and to deter-
mine the similarity in performance parameters between XSBech and OpenMC, we performed a
series of experiments. Each experiment involves monitoring specific aspects of hardware usage
using performance counters. The following section presents descriptions, results, and preliminary
conclusions for each experiment. For the purposes of simplicity, we concentrate our analysis on a
single node, multi-core, shared memory system. The system used was a PC node consisting of two
Intel Xeon octo-core CPUs for a total of 16 physical CPUs2. This allows us to get highly in-depth
results as we are able to run experiments dealing with architecture-specific features and hardware
counters.

In order to determine the specific hardware profiles of XSBench and OpenMC, both applications
are instrumented to collect hardware performance counter data with the Performance Application
Programming Interface (PAPI)[9].

3.1. Multi-Core Scaling Efficiency

The first step in our performance analysis is to investigate the basic performance scaling behaviour of
OpenMC and XSBench. We ran both applications with only a single thread to determine a baseline
performance against which efficiency can be measured. Then, further runs were done to test each
number of threads between 1 and 32. Efficiency is defined in Equation 1, where n is the number of
cores, Rn is the experimental calculation rate for n cores, and R1 is the experimental calculation
rate for one core.

Efficiencyn =
Rn

R1 × n
(1)

2The 16-core Xeon node used in our testing features hardware threading, supporting up to 32 threads per node.

6/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



XSBench – The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis

The tests reveal that even for this idealized representation of the key MC transport algorithm, perfect
scaling was not achievable. Figure 1 shows that efficiency degraded gradually as more cores were
used on the nodes. Efficiency at 16 threads degraded to 66% in OpenMC, and 69% in XSBench. As
this is a difference of only 4.5%, XSBench can be considered a very accurate tool for representing
multi-core scaling efficiency of the Monte Carlo neutron transport algorithm.

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

120%	  

0	   4	   8	   12	   16	   20	   24	   28	   32	  

Effi
ci
en

cy
	  

Threads	  

OpenMC	  

XSBench	  

Figure 1. Efficiency Scaling

3.2. Floating Point Calculation Rate

Consumption of available system floating point resources used by XSBench and OpenMC is calculated
using Equation 2, where PAPI FP INS and PAPI TOT CYC are hardware counter values that represent
the total number of floating point instructions retired and total number of hardware cycles used by
the programs respectively. The clockspeed of our Xeon test system is 2.8 GHz.

FLOPs =
PAPI FP INS

PAPI TOT CYC
× Clock (Hz) (2)

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

7/12



Tramm et al.

Using Equation 2, we were able to determine the FLOP performance of our applications, as shown
in Figure 2. We found that XSBench achieved at most 4.2 GFLOPs, while OpenMC achieved at
most 4.4 GFLOPs. As this is a difference of only 4.4%, XSBench can be considered an accurate tool
for measuring the floating point calculation rate of the Monte Carlo neutron transport algorithm.

0	  

500	  

1000	  

1500	  

2000	  

2500	  

3000	  

3500	  

4000	  

4500	  

5000	  

0	   4	   8	   12	   16	   20	   24	   28	   32	  

M
FL
O
Ps
	  

Threads	  

XSBench	  

OpenMC	  

OpenMC	  (Fit)	  

Figure 2. FLOP Usage

3.3. General Hardware Performance Counter Profiles

To further investigate the performance models of our two applications beyond the obvious parameters,
we conducted the following steps to measure a broad spectrum of performance correlations:

Step 1: For both XSBench and OpenMC, we collected 47 hardware performance counters for a code
region that was identified as the region of interest. In the case of OpenMC, this region was the full
particle transport loop. In the case of XSBench, this was the cross section lookup loop. We collected
these counters for runs that used between 1 and 15 threads with 1 thread per core on an Intel Xeon
machine.

8/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



XSBench – The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis

Step 2: Equation 3 shows how we computed the correlation coefficients between the values of each
counter for threads 1 through 15 with their corresponding efficiency loss. Each correlation value
indicates how the value of a performance counter correlates to the efficiency loss for all thread
cases. A positive strong correlation indicates that this performance counter captures the event that
may have some role in the loss of efficiency for this application. Figure 3 shows these computed
correlations for both XSBench and OpenMC on the Intel Xeon.

% efficiency lossj =

(
1− runtime1

runtimej ∗ j

)
× 100

correlation coeff[i] = pearson correlation
(
counterj[i], efficiency lossj

)
(3)

∀i ∈ {1, 2, ... , Number of performance counters}
∀j ∈ {1, 2, ... , Number of threads}

-1.5	

-1	


-0.5	

0	


0.5	

1	


1.5	

2	


2.5	


pe
rf:

:P
ER

F_
CO

U
N

T_
H

W
_B

U
S_

CY
CL

ES
 	


CY
CL

E_
A

CT
IV

IT
Y:

CY
CL

ES
_L

2_
PE

N
D

IN
G

 	

U

N
H

A
LT

ED
_C

O
RE

_C
Y

CL
ES

:t=
0 
	


PA
PI

_T
LB

_D
M

 	

PA

PI
_L

3_
TC

M
 	


pe
rf:

:P
ER

F_
CO

U
N

T_
H

W
_C

A
CH

E_
N

O
D

E:
M

IS
S 
	


PA
PI

_L
2_

IC
M

 	

L2

_L
IN

ES
_I

N
 	


PA
PI

_T
O

T_
CY

C 
	


CY
CL

E_
A

CT
IV

IT
Y:

ST
A

LL
S_

L2
_P

EN
D

IN
G

 	

pe

rf:
:P

ER
F_

CO
U

N
T_

H
W

_C
A

CH
E_

N
O

D
E:

M
IS

S 
	


PA
PI

_S
TL

_I
CY

 	

M

EM
_L

O
A

D
_R

ET
IR

ED
:L

2_
H

IT
 	


PA
PI

_L
2_

D
CM

 	

PA

PI
_F

P_
O

PS
 	


PA
PI

_F
P_

IN
S 
	


PA
PI

_L
2_

TC
M

 	

PA

PI
_L

2_
TC

A 
	


pe
rf:

:P
ER

F_
CO

U
N

T_
H

W
_C

A
CH

E_
D

TL
B:

M
IS

S 
	


PA
PI

_L
3_

TC
A 
	


RE
SO

U
RC

E_
ST

A
LL

S:
M

EM
_R

S 
	


M
EM

_L
O

A
D

_R
ET

IR
ED

:L
1_

H
IT

 	

H

W
_P

RE
_R

EQ
:L

1D
_M

IS
S 
	


PA
PI

_L
3_

D
CA

 	

PA

PI
_L

1_
LD

M
 	


M
EM

_U
O

P_
RE

TI
RE

D
:A

N
Y

_S
TO

RE
S 
	


M
EM

_U
O

P_
RE

TI
RE

D
:A

N
Y

_L
O

A
D

S 
	


PA
PI

_T
O

T_
IN

S 
	


PA
PI

_L
1_

ST
M

 	

PA

PI
_L

2_
ST

M
 	


O
FF

CO
RE

_R
ES

PO
N

SE
_0

:P
F_

RF
O

 	

O

FF
CO

RE
_R

ES
PO

N
SE

_0
:D

M
N

D
_D

AT
A

_R
D

 	

O

FF
CO

RE
_R

ES
PO

N
SE

_0
:P

F_
D

AT
A

_R
D

 	

O

FF
CO

RE
_R

ES
PO

N
SE

_0
:L

LC
_M

IS
S_

RE
M

O
TE

_D
RA

M
 	


O
FF

CO
RE

_R
ES

PO
N

SE
_0

:D
M

N
D

_R
FO

 	

O

FF
CO

RE
_R

ES
PO

N
SE

_0
:P

F_
LL

C_
D

AT
A

_R
D

 	

O

FF
CO

RE
_R

ES
PO

N
SE

_0
:L

LC
_M

IS
S_

LO
CA

L_
D

RA
M

 	

PA

PI
_L

3_
D

CW
 	


PA
PI

_L
3_

IC
A 
	


PA
PI

_L
2_

IC
A 
	


PA
PI

_T
LB

_I
M

 	

PA

PI
_L

3_
D

CR
 	


PA
PI

_L
2_

IC
H

 	

M

EM
_L

O
A

D
_R

ET
IR

ED
:L

3_
H

IT
 	


PA
PI

_F
D

V
_I

N
S 
	


pe
rf:

:P
ER

F_
CO

U
N

T_
H

W
_C

A
CH

E_
N

O
D

E:
A

CC
ES

S 
	


M
EM

_L
O

A
D

_R
ET

IR
ED

:H
IT

_L
FB

 	


C
or

re
la

tio
ns
	


Performance Counters	


openmc	
 xsbench	
 diff	


Figure 3. Correlation of all performance variables

Step 3: Figure 4 shows a handpicked short list of performance counters that have ratios greater
than 0.85, which demonstrates how effective the proxy application can emulate the resource usage
characteristics of its full application counterpart. From Figure 4, we can observe that all 6 perfor-
mance counters that most directly affect the loss of efficiency during scaling for both OpenMC and
XSBench are counters for events that contend for physical resources in the memory system such as

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

9/12



Tramm et al.

L2 cache, L3 cache, and memory bus – resources that are shared across cores. This result indicates
that XSBench is a good proxy application for emulating the memory system behavior of OpenMC.

0.82	

0.84	

0.86	

0.88	


0.9	

0.92	

0.94	

0.96	

0.98	


1	

pe

rf:
:P

ER
F_

CO
U

N
T_

H
W

_B
U

S_
CY

CL
ES

 	


CY
CL

E_
A

CT
IV

IT
Y:

CY
CL

ES
_L

2_
PE

N
D

IN
G

 	


U
N

H
A

LT
ED

_C
O

RE
_C

Y
CL

ES
:t=

0 
	


PA
PI

_L
3_

TC
M

 	


pe
rf:

:P
ER

F_
CO

U
N

T_
H

W
_C

A
CH

E_
N

O
D

E:
M

IS
S 
	


L2
_L

IN
ES

_I
N

 	


C
or

re
la

tio
n	


Performance Counters	


openmc	
 xsbench	


Figure 4. Ratio between correlation coefficients of XSBench and OpenMC for those variables that
are also strongly correlated with their corresponding loss of efficiency.

4. CONCLUSIONS

To investigate scaling and performance issues of robust, quasi-static nuclide depletion calculations
(i.e., where hundreds of nuclides are present in the fuel region and performance is dominated by
macroscopic cross section calculations), such as are performed by the neutron transport application
OpenMC, we have abstracted a key computational kernel that is responsible for the majority of the
algorithm’s runtime and implemented it in the form of the “proxy application” XSBench. The end
result is that the essential computational conditions and tasks of fully featured MC transport codes
are retained in the kernel, without the additional complexity of the full application.

We have verified that XSBench faithfully recreates the data access patterns of the full MC application,
OpenMC, across a broad range of hardware performance parameters. The multi-core scaling
efficiency and floating point calculation rate of XSBench are very similar (within 5%) to OpenMC.
Furthermore, the key portions of XSBench’s hardware performance profile closely match OpenMC –
both featuring heavy contention of shared memory resources.

10/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



XSBench – The Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis

Thus, our analysis has shown that XSBench forms a good “stand-in” for the full application, OpenMC.
Performance analysis and tuning done with XSBench should provide results applicable to the full
MC neutron transport algorithm, while being far easier to modify, run, and interpret, making
XSBench a convenient test bed for performance analyses on cutting edge platforms and experimental
next-generation high performance computing architectures.

5. FUTURE WORK

One might reasonably conclude that 66% efficiency on 16 cores, as shown in Figure 1, is adequate
scaling for OpenMC. However, next-generation node architectures are likely to require up to thousand-
way on-node shared memory parallelism,[10][11][12][13] and thus it is crucial to ascertain the cause
of the observed degradation and the implications for greater levels of scalability. Considering nodes
with thousands of shared memory cores and beyond, it cannot be taken for granted that performance
will continue to improve. We thus believe it important to identify to the greatest extent possible
which particular system resources are being exhausted, and how quickly, so that designers of future
hardware systems as well as developers of future MC particle transport applications can avoid
bottlenecks. Such studies are already underway on multi-core systems[14], but further analysis is
required for more exotic systems such as GPGPUs and the Xeon Phi accelerator.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-06CH11357. The submitted manuscript has
been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”)
under Contract DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

REFERENCES

[1] P. K. Romano and B. Forget. “The OpenMC Monte Carlo particle transport code.” Annals of
Nuclear Energy, 51(C): pp. 274–281 (2013).

[2] P. K. Romano, B. Forget, and F. B. Brown. “Towards scalable parallelism in monte carlo
particle transport codes using remote memory access.” (pp. 17–21) (2010).

[3] “Openmc monte carlo code.” https://github.com/mit-crpg/openmc (2014).

[4] A. R. Siegel et al. “Multi-core performance studies of a Monte Carlo neutron transport code.”
International Journal of High Performance Computing Applications, (pp. 1–25) (2013).

PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

11/12

https://github.com/mit-crpg/openmc


Tramm et al.

[5] “Xsbench: The monte carlo macroscopic cross section lookup benchmark.” https://github.

com/jtramm/XSBench (2014).

[6] J. E. Hoogenboom, W. R. Martin, and B. Petrovic. “MONTE CARLO PERFORMANCE
BENCHMARK FOR DETAILED POWER DENSITY CALCULATION IN A FULL SIZE
REACTOR CORE Benchmark specifications.” Ann Arbor, 1001: pp. 48109–42104 (2010).

[7] P. K. Romano et al. “Data decomposition of Monte Carlo particle transport simulations via
tally servers.” JOURNAL OF COMPUTATIONAL PHYSICS, 252(C): pp. 20–36 (2013).

[8] J. Leppänen. “Two practical methods for unionized energy grid construction in continuous-
energy Monte Carlo neutron transport calculation.” Annals of Nuclear Energy, 36(7): pp.
878–885 (2009).

[9] “Papi - performance application programming interface.” http://icl.cs.utk.edu/papi/

index.html (2013).

[10] S. Dosanjh et al. “Exascale design space exploration and co-design.” Future Generation
Computer Systems, (0): pp. –. ISSN 0167-739X. URL http://dx.doi.org/http://dx.

doi.org/10.1016/j.future.2013.04.018 (2013).

[11] N. Attig, P. Gibbon, and T. Lippert. “Trends in supercomputing: The european path to
exascale.” Computer Physics Communications, 182(9): pp. 2041 – 2046. ISSN 0010-4655.
URL http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.11.011 (2011).

[12] N. Rajovic et al. “The low power architecture approach towards exascale computing.” Journal
of Computational Science, (0): pp. –. ISSN 1877-7503. URL http://dx.doi.org/http:

//dx.doi.org/10.1016/j.jocs.2013.01.002 (2013).

[13] C. Engelmann. “Scaling to a million cores and beyond: Using light-weight simulation to
understand the challenges ahead on the road to exascale.” Future Generation Computer Systems,
(0): pp. –. ISSN 0167-739X. URL http://dx.doi.org/http://dx.doi.org/10.1016/

j.future.2013.04.014 (2013).

[14] J. Tramm and A. R. Siegel. “Memory Bottlenecks and Memory Contention in Multi-Core
Monte Carlo Transport Codes.” In: Joint International Conference on Supercomputing in
Nuclear Applications + Monte Carlo. Argonne National Laboratory, Paris (2013).

12/12 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014

https://github.com/jtramm/XSBench
https://github.com/jtramm/XSBench
http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/index.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.04.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.04.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.11.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2013.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2013.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.04.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.04.014

	INTRODUCTION
	The Reactor Simulation Problem
	OpenMC
	XSBench

	ALGORITHM
	Reactor Model
	Neutron Cross Sections
	Data Structure
	Access Patterns

	EXPERIMENTS
	Multi-Core Scaling Efficiency
	Floating Point Calculation Rate
	General Hardware Performance Counter Profiles

	CONCLUSIONS
	FUTURE WORK

